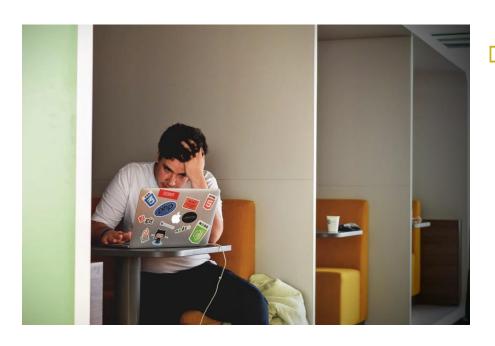


Robbie VanVossen @ seL4 Summit 2018

seL4 Practicality

Great solution for security:


- Formally proven
- Small size
- Open source
- COE

seL4 Practicality

Difficult to use, lacking:

- Drivers/Libraries
- Platform support
- Standardized API
- Dev tool support
- Overall performance
- Certification artifacts

seL4 Practicality

seL4 in real products:

- Leverage proof
- Expand ecosystem
- Virtualization as a stop-gap solution
- Work towards certifications

seL4 on AR System

Use Case 1:

- Port existing FreeRTOS implementation to seL4
 - Secure augmented reality application
- Challenges:
 - Configuration of system
 - Tools missing from ecosystem
 - FreeRTOS functionality missing from seL4
 - Unsupported platform

seL4 on AR System

Case 1 Customer Feedback:

- Virtualization > Porting
- Configuration: steep learning curve
- New tools eased development
- Difficult to add new drivers

seL4 on AR System - Contributions

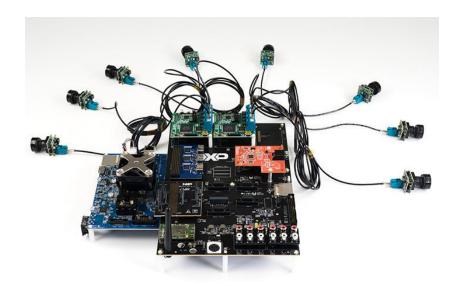
- Tools
 - ARM GDB-Server
 - IBLL
 - ARM Code Profiler
- Platform Support
 - Zynq UltraScale+MPSoC

- Drivers/Apps
 - TCP/IP Support
 - HTTPServer
 - Zynq7000 Ethernet Driver

Virtualized seL4 on ARM

Use Case 2:

- Demonstrate isolation of seL4
- Support Linux applications
- Ruggedized ARMv8 platform
- Challenges:
 - Unsupported platform
 - ARMv8 virtualization not implemented
 - Missing drivers



Virtualized seL4 on ARM

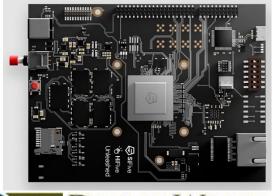
Case 2 Resulting Contributions (In Process):

- ARMv8 virtualization
 - Kernel mods
 - Library mods
 - Multi VM Support
 - Virtual channels
 - Configurations
 - Xilinx ZCU102
 - NXP i.MX8

- Platform Support
 - □ i.MX8
 - ARM GIC500 driver
 - BSP
- ARM SMMUv2 driver

seL4 on RISC-V

Use Case 3:


- Port seL4 to open RISC-V hardware
- Collaboration with Data61
- Challenges:
 - Rapidly changing spec/tools
 - 32-bit implementation
 - Memory on real hardware

seL4 on RISC-V

Case 3 Resulting Contributions:

- Platforms:
 - HighFive Unleashed
 - First hard RISC-V
 - 32-bit Spike
 - Rocket-Chip

- Future Plans:
 - Continue improving RISC-V support
 - Tools
 - Example apps
 - New platforms
 - Latest spec

seL4 DornerWorks Training

- seL4 COE Summit training
 - Tomorrow Nov. 2018
- seL4 webinar
 - □ Dec. 2018
- SAE seL4 training
 - March 2019
- seL4 Quick Start Package (QSP)
 - Advanced customer on-site training
 - seL4 working on selected platform

Future Enablers

- Community roadmap
 - Foster collaboration
 - Avoid duplication of effort
- Training
- Better/Quicker open sourcing process
- Less restrictions in contracts
 - ITAR/CUI

Questions?

Robbie VanVossen

robert.vanvossen@dornerworks.com

