
Verifiable C and the Verified
Software Toolchain

Princeton University
November 14th – 16th, 2018

Lennart Beringer &Andrew W Appel

Styles of program verification

● annotation-enriched code
● verification carried out on intermediate form, using SAT/SMT
● assertions: expressions from the target programming language
● first-order quantification
● various verification/modeling styles, encoded e.g. as ghost state
● automated verification for correct annotations
● relationship to compiler’s view of language unclear (soundness?)

IDE-embedded verification tool

● loop-invariants proof-embedded; function specs separate
● verification carried out on AST of source language
● assertions: mathematics (Gallina, dependent type theory)
● higher-order quantification
● specs can link to domain-specific theories (eg crypto, see below)
● interactive verification, enhanced by tactics + other automation
● formal soundness proof (“model”) links to compiler (CompCert)

VST: realization in interactive proof assistant (Coq)

2

Styles of program verification

● annotation-enriched code
● verification carried out on intermediate form, using SAT/SMT
● assertions: expressions from the target programming language
● first-order quantification
● various verification/modeling styles, encoded e.g. as ghost state
● automated verification for correct annotations
● relationship to compiler’s view of language unclear (soundness?)

IDE-embedded verification tool

● loop-invariants proof-embedded; function specs separate
● verification carried out on AST of source language
● assertions: mathematics (Gallina, dependent type theory)
● higher-order quantification
● specs can link to domain-specific theories (eg crypto, see below)
● interactive verification, enhanced by tactics + other automation
● formal soundness proof (“model”) links to compiler (CompCert)

VST: realization in interactive proof assistant (Coq)

3

VST : goals and methodology
4

Functional-correctness verification technology for C that
● applies to “real-world C”

● support (almost) full C & virtually arbitrary programming styles
● permits expressive specifications and abstraction disciplines

● e.g. custom-designed object protocols with opaque implementation invariants
● interaction with external world (operating system, network, . . .)
● top-to-bottom proof chains by integration with domain-specific model-level reasoning

● scales modularly to nontrivial code bases (see examples on later slides)
● (concurrent) separation logic: 21st century variant of Hoare logic
● semi-automated symbolic execution over abstract SL formulae inside Coq

● is foundationally justified w.r.t. the compiler’s view of C
● soundness proof in Coq w.r.t. CompCert’s Clight language(Current) limitations, TCB:

● main focus: partial-correctness, incl. safety (but no liveness)
● no intensional properties (time consumption, cache behavior...)
● no goto, no Duff’s device, no embedded assembly (yet)
● TCB: Coq (incl Ocaml & below) CompCert x86/ARM/Power/RiscV but not Clight!

Main features
5

Expressive, modular, foundational, semi-automatic program logic for C.
Clight, as formalized in CompCert

Concurrency (Dijkstra-Hoare + fine-grained), impredicative quantification, …

Higher-orderseparation logic Soundness proof for step-indexed model formalized w.r.t. operational semantics.

Floyd: forward-symbolic analysis, partial solution of side conditions using Ltac or verified decision procedures. Partial correctness + safety + limited information flow.

CompCert: compilation to x86-32/64, ARM, PowerPC, RiscV preserves externally visible behavior

Typical workflow1. Write a C program

append.c

#include <stddef.h>

struct list {int head; struct list *tail;};

struct list *append (struct list *x, struct list *y) {
 struct list *t, *u;
 if (x==NULL)
 return y;
 else {
 t = x;
 u = t->tail;
 while (u!=NULL) {
 t = u;
 u = t->tail;
 }
 t->tail = y;
 return x;
 }
}

User
supplied

6

Typical workflow1. Write a C program

append.v
(AST)

append.s

append.c

#include <stddef.h>

struct list {int head; struct list *tail;};

struct list *append (struct list *x, struct list *y) {
 struct list *t, *u;
 if (x==NULL)
 return y;
 else {
 t = x;
 u = t->tail;
 while (u!=NULL) {
 t = u;
 u = t->tail;
 }
 t->tail = y;
 return x;
 }
}

User
supplied

Dynamically
generated

C
 o

 m
 p

 C
 e r t

Frontend

(Clightgen)2. Parse and compileusing Clightgen/Compcert

7

Typical workflow1. Write a C program

append.v
(AST)

append.s

ModelProgram.vappend.c

#include <stddef.h>

struct list {int head; struct list *tail;};

struct list *append (struct list *x, struct list *y) {
 struct list *t, *u;
 if (x==NULL)
 return y;
 else {
 t = x;
 u = t->tail;
 while (u!=NULL) {
 t = u;
 u = t->tail;
 }
 t->tail = y;
 return x;
 }
}

User
supplied

Dynamically
generated

C
 o

 m
 p

 C
 e r t

Frontend

(Clightgen)2. Parse and compileusing Clightgen/Compcert3. Write a modelprogram in Gallina

8

Typical workflow1. Write a C program

append.v
(AST)

append.s

ModelProgram.v

spec_append.v

append.c

#include <stddef.h>

struct list {int head; struct list *tail;};

struct list *append (struct list *x, struct list *y) {
 struct list *t, *u;
 if (x==NULL)
 return y;
 else {
 t = x;
 u = t->tail;
 while (u!=NULL) {
 t = u;
 u = t->tail;
 }
 t->tail = y;
 return x;
 }
}

User
supplied

Dynamically
generated

import

im
p

o
rt

C
 o

 m
 p

 C
 e r t

Frontend

(Clightgen)2. Parse and compileusing Clightgen/Compcert3. Write a modelprogram in Gallina

4. Write a VST specification
Precondition

Postcondition

Aux. Variables
(arb. Coq type)

User-defined repr. predicate

9

Typical workflow1. Write a C program

proofauto.v
(“Floyd”)

append.v
(AST)

append.s

ModelProgram.v

spec_append.v

append.c

verif_append.v

#include <stddef.h>

struct list {int head; struct list *tail;};

struct list *append (struct list *x, struct list *y) {
 struct list *t, *u;
 if (x==NULL)
 return y;
 else {
 t = x;
 u = t->tail;
 while (u!=NULL) {
 t = u;
 u = t->tail;
 }
 t->tail = y;
 return x;
 }
}

User
supplied

Dynamically
generated

Statically
provided

import

im
p

o
rt

im
p

o
rt

import
C

 o
 m

 p
 C

 e r t

Frontend

(Clightgen)2. Parse and compileusing Clightgen/Compcert3. Write a modelprogram in Gallina

4. Write a VST specification
Precondition

Postcondition

Aux. Variables
(arb. Coq type)

User-defined repr. predicate

5. Prove the function body (define loop invariants on demand)

10

Model-level reasoning using FCF: verify cryptographic security
HACMS applications (also see A. Nogin’s talk)

Nonblocking concurrencyTop-to-bottom verification
of crypto primitives

Code-level reasoning with VST:verify implementation correctnessHMAC.cCompCertDRBG.c SHA.c
HMAC.v(executable)DRBG.v(executable) SHA.v(executable)

HMAC.v(bit-oriented)DRBG.v(bit-oriented) SHA cryptoassumptionsNIST,RFCProofs of functional
equivalence (Coq)

Manual transcription

HMAC.sDRBG.s SHA.sAssembler + Linker (unverified)HMAC-SHA256-DRBG.o

N readers, 1 writer

1

N+1

LB1 Data buffer 1

Data buffer N+2

1 LB 2

LB N

1) W selects free data buffer 0 < b < N+3
and writes data to b

2) W communicates b to all N readers
using atomic exchanges to all LB’s

3) Reader i inspects LBi to find
location of next data item

4) Reader i acknowledges receipt of b
using atomic exchange “Empty” in Lbi

5) Accesses to data buffers use
ordinary load/store operations

N+2: W can always find a free
data buffer !

11

Model-level reasoning using FCF: verify cryptographic security
HACMS applications (also see A. Nogin’s talk)

Nonblocking concurrencyTop-to-bottom verification
of crypto primitives

Code-level reasoning with VST:verify implementation correctnessHMAC.cCompCertDRBG.c SHA.c
HMAC.v(executable)DRBG.v(executable) SHA.v(executable)

HMAC.v(bit-oriented)DRBG.v(bit-oriented) SHA cryptoassumptionsNIST,RFCProofs of functional
equivalence (Coq)

Manual transcription

HMAC.sDRBG.s SHA.sAssembler + Linker (unverified)HMAC-SHA256-DRBG.o

N readers, 1 writer

1

N+1

LB1 Data buffer 1

Data buffer N+2

1 LB 2

LB N

1) W selects free data buffer 0 < b < N+3
and writes data to b

2) W communicates b to all N readers
using atomic exchanges to all LB’s

3) Reader i inspects LBi to find
location of next data item

4) Reader i acknowledges receipt of b
using atomic exchange “Empty” in Lbi

5) Accesses to data buffers use
ordinary load/store operations

N+2: W can always find a free
data buffer !

12

Further case studies

Abstract data types: binary search
trees (implemented by hash table)
● magic-wand-as-frame proof technique

for descending into data structures

Runtime components:
malloc/free library (D. Naumann)
garbage collector (S. Wang)

External interactions: DeepSpec server
● reasoning about state of external world

and operating system
 (socket API specs reusable in seL4 context?)

Custom object systems:
OpenSSL hash contexts (“envelopes”)
● how to specify function pointers and general “apply”

functions in C; whitebox & blackbox abstraction

13

External uptake & next steps

Benoit Viguier (Nijmwegen): elliptic-curve cryptography
Russel O’Connor (Blockstream): interpreter for smart-contract language

With W. Mansky (UI Chicago): search data
structures with optimistic concurrency control

With HRL (A. Nogin, M. Warren)
and Purdue (B. Delaware):
provably correct & safe data
format (de)serializers

integrate functional and
imperative programming
in Coq!

Try it yourself: http://vst.cs.princeton.edu/download

14

VST in context: (2016 – 2020), https://deepspec.org

15

Community building:
● summer schools ‘17 & ‘18
● workshops at PLDI etc.

Curriculum development:

RICH describe complex behaviors in detail
FORMAL in notation with a clear semantics
2-SIDED connected to clients & implementations

LIVE machine-checked connection to implementations multicore
COMPCERT

vehicles

Coq/Isabelle: the IDEs for 21st-century system stacks

	Slide129
	Slide 2
	Slide 3
	Slide 4
	Slide249
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

