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I. DIVISION

We’re all familiar with the concept of “dividing”. Roughly speaking, it’s how many times one thing “goes
into” another thing. This is mathematics, however, and we must make this definition precise.

Definition 1 Suppose 𝑎, 𝑏 ∈ Z. We say that 𝑎 divides 𝑏 if there exists another integer 𝑚 such that 𝑏 = 𝑎𝑚.

For example, 3 divides 6 because 3 ⋅ 2 = 6. 3 does not, however, divide 5, as there does not exist an integer
𝑚 such that 3𝑚 = 5.

Naturally, one could ask questions about this definition. Does every number divide every number? And if
𝑎 divides 𝑏 is 𝑎 less than 𝑏? Greater than 𝑏? Equal?

Lemma 2 If 𝑎, 𝑏 are positive integers and 𝑎 divides 𝑏, then 𝑎 ≤ 𝑏.

Proof. Suppose 𝑎 > 𝑏 and say that 𝑎𝑚 = 𝑏 for some integer 𝑚. Clearly, 𝑚 must be positive (and not 1, as
we assume 𝑎 > 𝑏 not 𝑎 = 𝑏), otherwise 𝑎𝑚 would not be positive. Substituting, we get

𝑎 − 𝑎𝑚 > 0.

Factoring our 𝑎, we have 𝑎(1 − 𝑚) > 0. Since 𝑚 is positive and not one, 1 − 𝑚 is negative meaning 𝑎(1 − 𝑚)
is negative. But this expression is supposed to be greater than 0, so we have reached a contradiction. Thus
𝑎 ≤ 𝑏. ⊓⊔

In the next subsection, we will introduce some ideas that will help us more easily decide when one integer
divides another. For now, though, let’s prove some more basic results.

Lemma 3 The following are true for some integers 𝑎, 𝑏 and 𝑐.

1. For all 𝑎 ∈ Z, 𝑎 ∣ 𝑎.

2. If 𝑎 ∣ 𝑏, then 𝑎 ∣ 𝑏𝑐.

3. If 𝑎 ∣ 𝑏 and 𝑎 ∣ 𝑐, then 𝑎 ∣ 𝑏𝑥 + 𝑐𝑦 for some integers 𝑥 and 𝑦.

Proof. We will prove these statements in order.
(1) We can write 𝑎 = 𝑎 ⋅ 1, which by definition means 𝑎 ∣ 𝑎.
(2) Say that 𝑎𝑚 = 𝑏 for some integer 𝑚. Then 𝑏𝑐 = (𝑎𝑚)𝑐 = 𝑎(𝑚𝑐), which means 𝑎 ∣ 𝑏𝑐.
(3) Let 𝑏 = 𝑎𝑛 and 𝑐 = 𝑎𝑚. Then 𝑏𝑥 + 𝑐𝑦 = 𝑎𝑛𝑥 + 𝑎𝑚𝑦 = 𝑎(𝑛𝑥 + 𝑚𝑦), meaning 𝑎 ∣ 𝑏𝑥 + 𝑐𝑦. ⊓⊔
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A. Division Algorithm

Assume we now know that not every number divides every number. But every number does “go into”
another number to some extent. We can capture this with the idea of the division algorithm.

Theorem 4 For any integers 𝑎 and 𝑏, 𝑏 ≠ 0, we can write 𝑎 = 𝑏𝑞+𝑟, where 𝑟 and 𝑞 are integers and 0 ≤ 𝑟 < |𝑏|.

Proof. We will first prove this only for 𝑎, 𝑏 ∈ Z+, because that is all it’s needed for in this paper. To this
end, fix some 𝑏 ∈ Z+ and consider the set 𝑆 = {𝑎 ∈ Z+ ∣ 𝑎 cannot be written as 𝑏𝑞 + 𝑟, 𝑟, 𝑞 ∈ Z, 0 ≤ 𝑟 < 𝑏}.
Clearly, 1 ∉ 𝑆, because if 𝑏 ≠ 1, we can write 1 = 𝑏(0) + 1. If 𝑏 = 1, then 1 = 𝑏(1) + 0. Either way, 1 does not
satisfy the conditions to be an element of 𝑆.

Since 𝑆 is a subset of Z+, we can pick a minimal element 𝐿 by WOP. Since 𝐿 is a minimal element of 𝑆,
𝐿 − 1 ∉ 𝑆 because 𝐿 − 1 < 𝐿. Thus we can write 𝐿 − 1 as 𝑏𝑞 + 𝑟, where 𝑞, 𝑟 ∈ Z and 0 ≤ 𝑟 < 𝑏. But this means
𝐿 = 𝑏𝑞 + 𝑟 + 1. If 𝑟 < 𝑏 − 1, then this is an expression of 𝐿 in a manner which contradicts that it’s an element
of 𝑆. If 𝑟 = 𝑏 − 1, then 𝐿 = 𝑏𝑞 + 𝑟 + 1 = 𝑏(𝑞 + 1), which still contradicts that 𝐿 ∈ 𝑆. Thus 𝑆 is empty, meaning
the division algorithm holds. ⊓⊔

B. Consequences of the Division Algorithm

Before we go into consequences of the division algorithm, we’ll need to introduce some terminology.

Definition 5 The greatest common divisor of two integers 𝑎 and 𝑏 is the largest integer that divides both 𝑎
and 𝑏.

For example, the greatest common divisor of 14 and 3 is 1, and the greatest common divisor of 65 and 26 is 13.
One might realize that we can write 1 as a linear combination of 14 and 3, namely 2(14) − 3(9). We can also
write 13 as a linear combination of 65 and 26, namely as 65 − 2(23). This motivates the following important
result.

Theorem 6 (Bezout’s Lemma) Say that 𝑎, 𝑏 ∈ ℤ. Then there exist integers 𝑥, 𝑦 ∈ ℤ such that 𝑎𝑥 + 𝑏𝑦 =
gcd(𝑎, 𝑏).

Proof. Suppose we have two integers 𝑎 and 𝑏. Then we can find integers 𝑥 and 𝑦 such that 𝑎𝑥 + 𝑏𝑦 ∈ Z+.
Simply choose 𝑥 as the sign of 𝑎, that is, if 𝑎 is negative choose 𝑥 = −1, and if 𝑎 is positive choose 𝑎 = 1
(similarly for 𝑏). By WOP, there is a smallest element of the set of integers one can write in this manner.
Call this smallest positive integer 𝑘. So far, we’ve written 𝑎𝑥 + 𝑏𝑦 = 𝑘. By the division algorithm(4), we can
write 𝑎 = 𝑘𝑞 + 𝑟, where 𝑞, 𝑟 ∈ Z+ and 0 ≤ 𝑟 < 𝑘. Subtracting 𝑘𝑞 from both sides, we get 𝑎 − 𝑘𝑞 = 𝑟. Since
𝑘 = (𝑎𝑥 + 𝑏𝑦), we substitute this in to get

𝑎 − (𝑎𝑥 + 𝑏𝑦)𝑞 = 𝑟
𝑎(1 − 𝑥𝑞) + 𝑏(−𝑞𝑦) = 𝑟.

This is an expression of 𝑟 as a linear combination of 𝑎 and 𝑏. We know 𝑟 is non-negative and that 𝑟 is less than
𝑘. However, 𝑘 is the smallest positive integer that can be written as a linear combination of 𝑎 and 𝑏, so 𝑟 = 0.
This means 𝑎 = 𝑘𝑞, so 𝑘 divides 𝑎. By the exact same argument, we also show 𝑘 ∣ 𝑏. Thus 𝑘 ≤ gcd(𝑎, 𝑏).
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Now, gcd(𝑎, 𝑏) divides 𝑎 and 𝑏, so it divides 𝑎𝑥 + 𝑏𝑦, or 𝑘. Thus gcd(𝑎, 𝑏) ≤ 𝑘. Since gcd(𝑎, 𝑏) ≤ 𝑘 and
gcd(𝑎, 𝑏) ≥ 𝑘, we have gcd(𝑎, 𝑏) = 𝑘, as desired. ⊓⊔

II. PRIMES

You may notice that there are some numbers whose greatest common divisors with other numbers is either
that number or 1. These numbers are called prime numbers. We’ll define them precisely as follows.

Definition 7 (Prime Numbers) An integer 𝑝 is called prime if:

1. Any factorization of 𝑝 into a product 𝑎𝑏 implies either 𝑎 or 𝑏 is ±1.

2. 𝑝 is positive.

3. 𝑝 ≠ ±1.

The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, etc.

A. Basic Results About Primes

In order to prove that every integer can be factored uniquely as a product of primes, we will first show
some other important results.

Lemma 8 Every positive integer except 1 has a prime divisor.

Proof. Let 𝕊 = {𝑛 ∈ ℤ+ ∣ 𝑛 > 1 and 𝑛 has no prime divisors }. If 𝑆 ≠ ∅, by WOP, 𝕊 has a smallest element,
say 𝑛0 ∈ 𝕊.
Since 𝑛0 > 1 and 𝑛0 has no prime divisors, then 𝑛0 cannot be prime, and there exist integers 𝑎0, 𝑏0 ∈ ℤ+ such
that 𝑛0 = 𝑎0 ⋅ 𝑏0 where 1 < 𝑎0, 𝑏0 < 𝑛 (by 2). This is because if 𝑛 > 𝑏0 > 1, 𝑎0 = 𝑛, then 𝑎0 ⋅ 𝑏0 > 𝑛0, the case
that 𝑛 > 𝑎0 > 1, 𝑏0 = 𝑛 leads us to the same result.
However, since 1 < 𝑎0 < 𝑛0 and 𝑛0 is the smallest element in 𝑆, then 𝑎0 ∉ 𝑆, which implies that 𝑎0 has a prime
divisor 𝑝 that satisfies 𝑝 ∣ 𝑎0, but then 𝑝 ∣ 𝑛0 = 𝑎0 ⋅ 𝑏0 as well, which contradicts.
As a result, the assumption that 𝕊 ≠ ∅ leads to a contradiction, and we must have 𝕊 = ∅, so that every positive
integer 𝑛 > 1 has a prime divisor. ⊓⊔

Lemma 9 Every positive integer greater than 1 is expressible as a product of primes.

Proof. Let 𝕊 = {𝑛 ∣ 𝑛 ∈ ℤ+ and 𝑛 cannot be expressed as a product of primes}, which is non-empty. By
WOP, 𝕊 has a smallest element, say 𝑛0. By 8, we know that every positive integer greater than 1 has prime
divisors, so there exist 𝑝 ∣ 𝑛0 for some primes 𝑝, and 𝑝 can be represented as 𝑛0 = 𝑝𝑎, where 𝑝 ∈ ℤ+. Then by
2, we know that 𝑝, 𝑎 < 𝑛0 since 𝑝 ≠ 1. Since we assume 𝑛0 is the smallest number which can’t be written as a
product of primes, 𝑎 can be expressed with a product of primes. And since 𝑝 is also a prime, then 𝑛0 = 𝑝 ⋅ 𝑎 can
be expressed as a product of primes, which contradicts. Hence, 𝕊 = ∅, so every positive integer greater than 1
is expressible as product of primes. ⊓⊔
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B. Euclid’s Lemma and its Generalization

We almost have enough tools to proof the Fundamental Theorem of Arithmetic. We just need the following
two results.

Lemma 10 (Euclid’s Lemma) Suppose we have some prime 𝑝 and integers 𝑎, 𝑏. Then if 𝑝 ∣ 𝑎𝑏, either 𝑝 ∣ 𝑎
or ∣ 𝑏.

Proof. If 𝑝 ∣ 𝑎, then we are done. Thus suppose 𝑝 ∤ 𝑎. Since 𝑝 is a prime, gcd(𝑝, 𝑎) = 1. By Bezout’s lemma,
there exist 𝑥, 𝑦 ∈ ℤ such that 𝑝𝑥 + 𝑎𝑦 = 1. Multiplying both sides by 𝑏, we get 𝑝𝑏𝑥 + 𝑎𝑏𝑦 = 𝑏. Since 𝑝 ∣ 𝑎𝑏, 𝑎𝑏
can be written as 𝑎𝑏 = 𝑝𝑘 for some 𝑘 ∈ ℤ. Hence, we have 𝑏 = 𝑝𝑏𝑥 + 𝑎𝑏𝑦 = 𝑝(𝑏𝑥 + 𝑘𝑦). Consequently, 𝑏 is the
multiple of 𝑝, which means 𝑝 ∣ 𝑏. ⊓⊔

Proposition 11 Suppose 𝑝 is a prime and 𝑎1, … , 𝑎𝑛 are integers. Then if 𝑝 ∣ 𝑎1 ⋯ 𝑎𝑛, 𝑝 ∣ 𝑎𝑖 for some 1 ≤ 𝑖 ≤ 𝑛.

Proof. Pick some sequence of integers 𝑎𝑖 and fix some primes 𝑝. Consider the set 𝑆 = {𝑚∶ 𝑝 ∣ 𝑎1 ⋯ 𝑎𝑚, 𝑝 ∤
𝑎𝑖 for all 1 ≤ 𝑖 ≤ 𝑚}. Clearly, 1 ∉ 𝑆. We want to show 𝑆 is empty, so assume otherwise for the sake of
contradiction.

Clearly, 𝑆 is a subset of Z+, meaning we can pick a minimal element ℓ by WOP. Then, we have that
𝑝 ∣ 𝑎1 ⋯ 𝑎ℓ and 𝑝 ∤ 𝑎𝑖 for all 1 ≤ 𝑖 ≤ ℓ. By Euclid’s Lemma, this means 𝑝 ∣ 𝑎1 ⋯ 𝑎ℓ−1. But since ℓ − 1 ∉ 𝑆, 𝑝 ∣ 𝑎𝑖
for some 1 ≤ 𝑖 ≤ ℓ − 1. Thus 𝑝 ∣ 𝑎𝑖 for some 1 ≤ 𝑖 ≤ ℓ, which contradicts that ℓ is in the set 𝑆, meaning 𝑆 is
empty, as desired. ⊓⊔

III. THE FUNDAMENTAL THEOREM OF ARITHMETIC

We have now built up all the machinery needed to prove the Fundamental Theorem of Arithmetic (FTA),
namely Unique Factorization Theorem (UFT).

Theorem 12 (Fundamental Theorem of Arithmetic) Every positive integer can be uniquely factored as
a product of primes.

Proof. Consider the set 𝑆 = {𝑛 ∈ Z+ ∣ 𝑛 cannot be written uniquely as a product of primes.}. We would
like to prove this set is empty, so assume otherwise. By WOP, we can pick a minimal element 𝐿 of 𝑆. Suppose
𝐿 can be factored as 𝑝1 ⋯ 𝑝𝑟 and 𝑞1 ⋯ 𝑞𝑠, where each of the 𝑝𝑖 and 𝑞𝑗 are primes.

Since 𝑝1 divides 𝐿, 𝑝1 also divides 𝑞1 ⋯ 𝑞𝑠. By 11, 𝑝1 divides one of 𝑞𝑗 for some 1 ≤ 𝑗 ≤ 𝑠. WLOG, let this
be 𝑞1. Since 𝑞1 is a prime, 𝑝1 = 𝑞1, which means 𝑝2 ⋯ 𝑝𝑟 = 𝑞2 ⋯ 𝑞𝑠. But if these two factorizations of 𝑛/𝑝1 are
different, then there is a positive integer smaller than 𝑛 that can be factored into primes non-uniquely. Thus
these factorizations are the same. But this implies our original factorizations of 𝑝1 ⋯ 𝑝𝑟 and 𝑞1 ⋯ 𝑞𝑠 are the same.
Thus unique factorization holds. ⊓⊔
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