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Nowadays, beekeepers are deeply concerned with the possibility of the collapse of bee
colonies due to issues with viruses and pesticides. Beekeepers also try to increase the productive
output of flowers by placing beehives in optimal locations.

In response to the first question, we decided to build a series of differential equation depicting
the number of bees over time. In order to solve the second challenge,we created an algorithm
that depicts the number of bees and we design a programming model that can indicate positions
of the bee hives to maximize the profit that bee keepers can get.

The first part of our model establishes a differential equation of the number of bees in the
colony .We divide the bee’s life into different stages and carefully build equation of the number
of each stage. The stages include unfertilized eggs, fertilized eggs, hive bees and foragers.We
take many factors such as the rate of fertilization of eggs, the eclosion rate, the virus that threaten
the bees, the pesticides,etc into consideration and develop a comprehensive model of the total
number of the bees. We also successfully calculated the static numeric value of the bee colony
as well as the maximum mortality rate to warn the farmers of the possibility when the bee
colony will collapse.

The second part of our model, we analyze the sensitivity of 5 variables that we calculated
in our model in the first part using some common data from bee farms. We demonstrated how
these variables affect the colony size using detailed graphs and scientific analysis.We concluded
that the capacity of the bee hive, the production rate of the eggs and the fertilized rate have
positive effect on the bee colony, while the mortality rate has negative effect.

The third part of our model we used mathematical expectation algorithm to concisely depict
the complicated tendency of bees visiting flowers. We use programming model to maximize the
profit (the money bee keepers get from flowers that successfully grow food-the cost of managing
the bee hives) bee keepers will receive by operating on the coordinate of the bee hives as well
as the number of the bees in each of the bee hives according to the number of flowers and
environmental conditions in the farm. Using this algorithm, farmers can get an idea of where
to put their bee hives and the number of the bees for each hive.

We also designed a information graphic page to demonstrate the data that we get from our
model vividly to others.
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 Honeybees play a paramount role to human

existence on our planet. In 2007, the term

Colony Collapse Disorder (CCD) was created to

describe the decline of honeybee populations

around the world. 

In the paper, we'll analyze what affects its

population and develop models, using differential

equations, to determine the population of a

honeybee colony over time. We make models and

predict how many honeybee hives we will need to

support pollination of a 20-acre (81,000 square

meters) parcel of land containing crops that benefit

from pollination by using  the programming model.

Our vision

Hive bees Team # 12733

Introduction

Processes

The first model:

We divide the change rate into the natality and the mortality, as

the former is made up of  fertilization rate and hatching rate and

the latter is result from four elements: anthropic factors,

predators, viruses, and natural ages.

The second model: 

We use the progrmming model to find out how many beehives and

where beehives locate maximize the profit. 
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1 Introduction
1.1 Background

Bees are vital to the environment [1]. The most important function they serve is the pollinate
our plants, meaning they carry pollen from plants of different sex, helping them reproduce. Bee
colonies are often used by farmers to produce honey, producing more than 1.6 million tons of
honey annually with 80 million hives. They are also essential to maintaining biodiversity in an
ecosystem.

However, the population of bee colonies is declining globally. For over a decade, habitat
loss, extensive farming practices, and climate change have all threatened the bee population.
Furthermore, wide-scale transport of bees may result in the transmission of pathogens, causing
more harm to the bees. Reducing the rate at which these factors occur would stop the decline
in bee population [2].

1.2 Problem Restatement
The population of a honeybee colony is decided by many complicated factors. The first

question asks us to predict the population of a honeybee colony. Here, we create a model of
the honeybee colony in order to measure the growth of its population over time. It considers
only the most important factors, such as season, making it a simplified version of its natural
counterpart.

Apart from the population, profit is another key factor to consider for farmers. Therefore,
the second problem asks how many beehives are required to support a plot of land with an area
of 20 acres. To solve this problem, we need to consider the amount as well as the placement of
the beehives, since different placements can result in vastly different results. The model uses
iteration to calculate both variables. The profit is then calculated to rank the results.

2 Assumptions and Justification
1. Assumption: The brood reared by the queen bee is only affected by the season and the

remaining capacity of the hive [3].
Justification: In nature, the queen bee usually lay eggs according to the remaining capacity
of the hive, when there are few spaces left for new eggs, the queen bee will reduce her
rate of laying eggs. Seasons have to be taken into consideration too, because the queen
bee tend to lay more eggs in the summer but fewer in the winter.

2. Assumption: We ignore the effect of drone fertilization, we can ignore the population of
drones.
Justification: In real life, unfertilized eggs will eventually become drones. However, the
fertilized rate of the eggs actually depend on the number of the drones which makes the
process really complicated. To simplify this process we define the fertilized rate as a
variable that only depends on the seasons, and thus ignore the effect of the drones.

3. Assumption: Hive capacity does not include foragers.
Justification: Foragers mainly collect honey outside, so we can assume that the hive bee
capacity do not include foragers.

4. Assumption: Ignore the recovery of sick bees.
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Justification:Since the death rate is mainly determined by the bees’ living conditions, we
will set it as a constant.

5. Assumption: Mimicking how organisms interact in nature, we will set the predatory
ability of predators α on bees as constant C.

6. Assumption: The natural life span of a bee is determined only by the pollen density and
its working conditions.In addition,the amount of work a bee does is only determined by
the season.
Justification: The pollen density can be seen as the food source that sustain the bee’s
growth. Bees tend to work harder during the summer, resulting in a sharper decline in
their population. We therefore have to take the season and the working amount of bees
into consideration.

7. Assumption: The destruction done by humans to bees is always faster than the regeneration
speed of the bees’ environment.
Justification: This is due to the common fact that the environmental damage human
caused is really severe and this will often cause damage that the natural environment is
not able to recover.

8. Assumption: Farmers only plant 1 type of flower.
Justification: Farmers tend to plant only 1 type of plant in a single area to avoid unneces-
sary competition among the flower species.In addition, this assumption can simplify our
estimation.

9. Assumption: Ignore the time it takes for bees to go from a fertilized egg to an adult.
Justification: We only want to calculate the increasing rate of the hive bees and foragers.
Therefore, we will ignore this process and try to calculate this process by assessing the
bee colony as a whole without considering a single bee’s growth.

10. Assumption: Bees will not take into account the decision of other bees when selecting
their flower, which means that the flower selection of bees is only determined by distance
and the number of bees will not change with time.
Justification: In real life situation, the bees’ main goals are getting the pollen from the
flowers, so we can ignore the competition among bees to simplify our results. Also,
farmers tend to take good care of their bees, so we suppose that the number of bees
remain unchanged in this period.

11. Assumption: The total distance traveled by the bee will never surpass its maximum flying
distance.
Justification: Bees are able to fly and work in a relatively large distance. So to simplify
the results, we will assume that the total distance will not succeed the bee’s limit.

3 Variables
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Variables Description
B the number of unfertilized eggs
A the number of fertilized eggs
H the number of hive bees
F the number of foragers
β the rate of fertilizing
R the capacity of the bee hives
pn the number of predators
a the ability that predators catch the bees

S1, S2, S3, S4 the spring ,summer ,autumn, winter egg production rate of the queen bee
S the brooding speed
t the mortality rate of the virus
r the natural death rate of the bees
φ the loss ratio of the unfertilized eggs
E the workload of the bee
E0 the lowest workload of the bee

E1, E2, E3, E4 the spring, summer, autumn, winter workload
ρ the maximum density of the pollen
v the overall decreasing rate of the pollen density
ε the number of times that the flowers need to be visited by the bees in order to get fruit
N the number of flowers
Ti,j the distance of the ith bee hive and the jth flower
A the total number of the fruited flowers

(xi, yi) the coordinate of the ith bee hive
Ni the number of bees in the ith bee hive

(nj,mj) the coordinate of the jth flower
∆S the expected number of the times that the Sth flower that will be visited
q the cost of installing one bee hive
r the cost of caring for one bee in this period
Z the profit that the bee keepers will get when a single flower grow fruit
P the total profit that the bee keeper will get
l the number of bee hives
m the death rate of bees
d the natural contribute factor of the bee’s death rate
p the pesticides factor

p1,2,3,4 the spring, summer, autumn, winter pesticides killing rate
k the passing time
t the factor of viruses

Table 3.1: Model variables and description
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4 Colony Demographic Model
4.1 Differential Equation Analysis
4.1.1 Model framework

Firstly, we will briefly summarize the framework of whole bee colony (shown in Figure 4.1).
There is one queen bee that produces eggs. Unfertilized eggs are produced and the eggs which
are fertilized will turn into hive bees. The ones who are not fertilized will turn into drones or
get lost.

Then, the fertilized eggs will receive food given by the hive bees and there is a eclosion rate
of fertilizing eggs turning into hive bees.

Foragers is a kind of bee that finds food outside the bee hive and usually do not stay in the
bee hive for a long time. Therefore, foragers will be more likely to died because of outside
dangers such as predators, viruses, old age.

The colony will consistently monitors the balance between the number of hive bees and the
foragers.Once foragers are in a relatively low number, some of the hive bees will transform into
foragers. The process of the opposite direction can also occur, with the number of hive bees
decreasing and foragers turning into hive bees.The number of bees in the colony that we want
to calculate is the sum of the number of hive bees and foragers.

Figure 4.1: process

Since we hypothesize that the hive only has one queen bee, we only need to consider the
unfertilized eggs that it lays. Unfertilized eggs may have the probability of β turning into
fertilized eggs, while others will grow into drones, which we will ignore. Moreover, the
unfertilized eggs will lose with the probability of φ.

We hypothesise the amount of brood reared is influenced by the size of the colony (number
of hive and forager bees),the relation of which can be represented as f(H,F ). Additionally,
that the rate at which bees transition from hive bees to foragers is influenced by the number of
foragers to represent the effect of social inhibition, the connection of which can be illustrated
as g(H,F ).
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Our model considers the death rate of adult bees within the hive to be negligible, but
foragers’ death rate is a parameter varied in our simulations. In the model, we hypothesise
that the death of foragers only result from four elements: predators, viruses, natural death and
human influence factors.

4.1.2 The Unfertilized Eggs

We first consider the change rate of the number of unfertilized eggs using differential equations.
It can be perceived that the speed that the queen bee produces eggs, which can be called brooding
speed as well, may affect the change rate of unfertilized eggs.

The brooding speed S satisfies this equation:

S = λ1S1 + λ2S2 + λ3S3 + λ4S4, (4.1)

where λi ∈ 0, 1 for i ∈ [1, 2, 3, 4]. In this equation, Si represents the brooding speed of different
seasons. For example, λ3 = 1 while λ1, λ2, λ4 = 0 when it’s autumn. In addition, S normally
is 2000.

Similarly, the fertilization rateβ isλ1β1+λ2β2+λ3β3+λ4β4,whereβi represents the seasonal
fertilizing rate. Since fertilizing means that the unfertilized eggs will turn into fertilized eggs,
we need to minus this factor.

Moreover, it should be found that some of the unfertilized eggs may be lost or elosed into
drones, we define φ as the loss rate.

We also have to consider the effect of the remaining bee hive capacity R−A−B−H . The
brooding speed will be affected by the ratio of the remaining space and the whole space of the
bee hive.

Therefore, we obtain this equation:
dB

dt
= S

R− A−B −H

R
− βB − φB (4.2)

where R is the capacity of the bee hive, normally R’s value will range from 20000 to 80000.

4.1.3 The Fertilized Eggs

The next step we will find the differential equation about the number of fertilized eggs.

We will first try to analyze the successful rate in which the eggs turn into hive bees.Nutrient
quality w may affect the success rate of fertilized eggs hatching into hive bees, so we use
f(H,F ) ,where H is the number of hive bees and F is the number of foragers, to indicate the
success rate.

We need to note that both the foragers and the hive bees are really important in the feeding
of the fertilized eggs since in nature the foragers find food and the hive bees turn the food into
materials that the eggs can absorb, so the number of both of them are positive factors to f(H,F).

Therefore, we define:
f(H,F ) =

H + F

ω +H + F
(4.3)

From Figure 4.2, we can see the relationship between of H and F in different ω. ω is lower
when the nutrient level of a certain place is higher,we can see that when ω is lower, the rate
which f(H,F ) change with the value of H + F decreases.
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Figure 4.2: The graph between H + F and f(H,F ) with different values of ω

We recall that the fertilized eggs will increase with a speed of βB,which we have already
calculated in the previous section

Now we are able to calculate the number of fertilized eggs by integrating both the increase
and the decrease in the number of fertilized eggs.The equation can be indicated as:

dA

dt
= βB − f(H,F )A (4.4)

4.1.4 Foragers and Hive Bees

Then, we are supposed to find the differential equation about the number of hive bees Hand
foragers F .

We assume that the death rate of hive bees is negligible because death rates of adult hive
bees in a healthy colony are extremely low as the environment is protected and stable.

Workers are recruited to the forager class from the hive bee class and we define the recruit-
ment rate as:

g(H,F ) = (α− σ
F

H + F
) (4.5)

note that the recruitment that we assume is from H to F, therefore, if the value we have
calculated is positive, it means that hive bees are converting to foragers, if the value we have
calculated is negative, it means that foragers are converting into hive bees

As for g(H,F ), we use α to denote the maximum rate that hive bees will become foragers
when there are no foragers present in the colony.

The second factor we need to concern can be illustrated as

−σ
F

H + F
(4.6)

which represents social inhibition and how the presence of foragers reduces the rate of recruit-
ment of hive bees to foragers. This equation depicts the common fact that when the foragers
are a large amount of the bee colony population, the eclosion rate tends to be low, σ represents
local issues

We learn from reference [2] that in the absence of any foragers new workers will become
foragers at a minimum of four days after eclosing, so an appropriate choice for the rate of
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uninhibited transition to foraging is α=0.25. We chose σ=0.75 since this factor implies that
a reversion of foragers to hive bees would only occur if more than one third of the hive are
foragers.

We have assumed that social inhibition is directly proportional to the fraction of the total
number of adult bees that are foragers, such that a high fraction of foragers in the colony results
in low recruitment.

According to the formal computes, we can find the differential equation about the number
of hive bees and foragers:

dH

dt
= f(H,F )A− g(H,F )H (4.7)

dF

dt
= g(H,F )H −mF (4.8)

where m is the mortality rate of the foragers, since we ignore the death of other bees.

4.1.5 Mortality Rate

After that, we ought to calculate the death rate of foragers m. We have assumed that only four
factors—-predators, viruses, pesticides and dying of natural age, and the calculation process of
which will be indicated as follows.

Firstly, We assume that the predation quantity of predators only depends on their hunting
ability a and their population pn, so its effect can be represented as

φ(pn) = ap (4.9)

Secondly, as regards the impact of viruses, infected foragers can’t recover in our model,
therefore we use t to show the impact.

Thirdly, as for the pesticides, since the amount of pesticides using depends on the season, it
can be seen as

p = λ1p1 + λ2p2 + λ3p3 + λ4p4 (4.10)

where pi represents the seasonal effect of pesticides, we defined similar variables before.

Finally, bees’ natural length of life may be affected by their workloads E and the environment.
The effect of the environment on bee’s natural death is really complex. Therefore, we only
consider the density of flowers ρ as a direct environmental factor.

The caseloads E can be indicated as

E = λ1E1 + λ2E2 + λ3E3 + λ4E4 (4.11)

and the density of flowers ρ can be demonstrated as

ρ = ρ0 − vk (4.12)

where ρ0 means the highest density of flowers,and v means the speed of human destroying
flowers minus the speed of flowers growing, k is the pasting time.
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We also realize that the work load that exceeds the lowest work load E0 has negative effect
on the bee’s natural death rate. So the factor is defined as:

d =
T

ρ
(1− θ

E − E0

). (4.13)

where T and θ contributes to local and environmental conditions.

Therefore, m can be represented as:

m = φ(pn) + t+ p+ d (4.14)

detailing the equation we get :

m = ap+λ1p1+λ2p2+λ3p3+λ4p4+ t+
T

ρ0 − vk
(1− θ

λ1E1 + λ2E2 + λ3E3 + λ4E4 − E0

)

(4.15)

4.2 Stable Analysis
Finally, in order to warn the bee keepers about the stability of the bee colony. We will try to

calculate the numerical value when the hive bees and the foragers are stable. We calculate this
value in order to calculate the maximum mortality rate m. We calculate this by letting all of the
differential equation’s value=0 and trying to solve this equation:

dH

dt
= 0;

dF

dt
= 0;

dA

dt
= 0;

dB

dt
= 0 (4.16)

The model has a globally stable steady state (Ĥ, F̂ ) where

F̂ =
MR− Mmω

1+ 1
λ

Rm+ Rφm
β

+ M
λ
+ Mm

β
+Mm

(4.17)

Ĥ =
MR− Mmω

1+ 1
λ

λ(Rm+ Rφm
β

+ M
λ
+Mm)

(4.18)

where we regard λ1S1 + λ2S2 + λ3S3 + λ4S4 as M and F
H

as λ and

λ =
−(m+ σ − α) +

√
(m+ σ − α)2 + 4mα

2m
(4.19)

We need to mention that if m makes the stable number of both the hive bees and the foragers
under zero, then obviously the bee colony will die out. The conditions for F̂ and Ĥ to be larger
than 0 is:

MR >
Mmω

1 + 1
λ

(4.20)

We therefore get the critical point of mortality:

m2(αω −R)−m(2mα +Rσ −Rα) +
σR2

ω
< 0 (4.21)
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The whole process can be found in Appendix.

We can see from this equation. The stable number of the hive bees as well as the foragers rely
on the bee hive capacity R, the seasonal production of eggs S, the lose rate of the unfertilized
eggsφ, the mortality rate m, the relative stable ratio of λ the fertilizing rate β,local issues, such
as σ and the local nutrient rateω as well as the maximum rate of turning into foragers α.

We can also conclude that only if m satisfy the inequality we get that the bees are not going
to die. This equation consists of variables that are determined by local issues, such as σ and the
local nutrient rate ω,but it is also determined by the capacity of the hive R, the maximum rate
of turning into foragers α.

4.3 Numerical Experiment
We run numerical experiment for the designed demographic model, the detailed parameters

and corresponding value is given in Table 4.1.

Parameters R B initial A initial H initial F initial β α
Values 0.6 0.1 2000 0.8 0.85 0.8 0.7

Parameters φ m S1, S2, S3, S4 L1 L2 L3 L4

Values 80000 1000 1000 15000 5000 0.5 0.25

Table 4.1: Model Parameters

Figure 4.3 shows the relationship between the number of fertilized and unfertilized eggs
with time. Both values show little relation to the time of year. Rather, the values remain mostly
constant, with the total population stabilizing at around 2000 [5]. However, one general trend
that remains constant is that the amount of unfertilized eggs is always larger than the amount of
fertilized eggs.

Figure 4.3: Fertilized eggs (A) and unfertilized eggs (B) against time

Figure 4.4 shows the relationship between the number of hive bees and foragers with time.
Both values have increased from the initial value. All values rise sharply at the start, with the
total going from around 20000 to 35000. After that, the population remains mostly constant,
save some small fluctuations and one significant drop at around day 300. The total population
at day 300 400 dropped from around 33000 to 31000. Since day 300 is around the time which
Winter starts, the weather may explain this sudden decline. However, the population quickly
recovers.
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Figure 4.4: Hive bees (H) and foragers (F ) against time

4.4 Sensitivity Analysis
The following Table 5.1 displays the range for which each variable was tested. Variables

not included in the table remain the same as in the last table. Figure 4.5 and Figure 4.6 show

Parameters Range Amount generated
S 1000 ≤ S ≤ 3000 100
m 0 ≤ m ≤ 1 100
β 0 ≤ β ≤ 1 100
R 20000 ≤ R ≤ 80000 100
φ 0 ≤ φ ≤ 1 100

Table 4.2: Parameter Range

a sensitivity analysis on m. For Figure 4.5, it can be seen that an increase in m causes the
total population to decrease. The effect is most noticeable at smaller values. Likewise, for
Figure 4.6, an increase in m is also reflected in a decrease in the overall population. However,
fluctuations in the population from changes of season can also be noticed, as shown through a
decrease in population every time winter comes (3 times, since we ran the simulation for 1095
days = 3 years).

Figure 4.5: Relationship between the death
rate (m) to population

Figure 4.6: Relationship between the death
rate (m) to population and time
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Figure 4.7 and Figure 4.8 shows a sensitivity analysis on β. For Figure 4.7, it can be seen
that an increase in β causes an increase in the total population. Likewise, for Figure 4.8, an
increase in β is also reflected in an increase in the overall population. Very tiny fluctuations
in the population from winter coming are also shown (3 times, since we ran the simulation for
1095 days = 3 years).

Figure 4.7: Relationship between the rate
of fertilization (β) to population

Figure 4.8: Relationship between the rate
of fertilization (β) to population and time

Figure 4.9 and Figure 4.10 show a sensitivity analysis on S. For Figure 4.9, it can be
seen that an increase in S causes an increase in the total population. Likewise, for Figure
4.10, an increase in S is also reflected in an increase in the overall population. However, large
fluctuations in the graph can be seen from the season becoming winter.

Figure 4.9: Relationship between the
brooding speed (S) to population

Figure 4.10: Relationship between the
brooding speed (S) to population and time

The trend of R, as shown through Figure 4.11 and Figure 4.12, is the same as variable R.
An increase in R causes an increase in the total population.

Figure 4.13 and Figure 4.14 show a sensitivity analysis on φ. For Figure 4.13, it can be
seen that an increase in φ causes a decrease in the total population. Likewise, for Figure 4.14,
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Figure 4.11: Relationship between the hive
capacity (R) to population

Figure 4.12: Relationship between the hive
capacity (R) to population and time

an increase in φ is also reflected in a decrease in the overall population. Large fluctuations are
also visible.

Figure 4.13: Relationship between the loss
ratio of the unfertilized eggs (φ) to popula-
tion

Figure 4.14: Relationship between the loss
ratio of the unfertilized eggs (φ) to popula-
tion and time

5 Pollination Programming
5.1 Mathematical Model of Optimal Profit

In this question, we need to consider where to put our hives at and to organize the number of
the bees in each hive. Our goal is to maximize our profit, which means that we need to maximize
the number of flowers being fertilized by the bees.[4] To efficiently, address this problem, we
assume that the field is a rectangle with 81000 square meters. We therefore, establish a plane
rectangular coordinate. Since we define l as the number of the hives, the coordinate of the bee
hives are (x1, y1), ...,(xi, yi), ... , (xl, yl).These are all variables.
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We assume that the total number of the flowers is N . The coordinate of each of the flower
is (n1,m1),..., (nj,mj), ... , (nN ,mN ). These are all coordinates we already know.

We want to calculate the number of flowers successfully fertilized without getting into very
detailed analysis with a single bee’s behavior, so we try to calculate the expected value of the
number of times which the flowers are being visited by the bees in a single period. We try to
analyze this process by considering to aspects.

Firstly, we consider the process of bees choosing flower (see Figure 5.1). Bees in the same
bee hives tend to choose different flowers.We assume that bees choose their flowers simply by
the distances between the flowers and their beehives. The smaller the distance, the more likely
the bees are going to visit this flower. The distance Tij between the ith flower and jth bee hive
can be calculated by Euclidean distance:

Tij =
√

(xi − nj)2 + (yi −mj)2 (5.1)

Secondly, we consider the process of flowers receiving bees (see Figure 5.2). The flowers tend

Figure 5.1: Bees in a single hive tend to choose flowers

to welcome all of the bees from different beehives. So we will be able to calculate the whole
expected value of the visited number by adding the expected visit times of all the beehives to
the flower up.

Figure 5.2: Flowers will receive bees from different hives

We calculate the number of bees in the jth bee hive that visit the sth flower. This mainly
depends on the ratio of Tsj and the total distance from the jth bee hive to all of the flowers,which
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is
∑N

i=1 TijTsj and the number of bees living in the sth bee hive, which is Nj we know that the
less Tsj is, the more likely will the bees visit from the sth bee hive will visit this flower. We need
to add up the variable α and β to represent the working amount as well as the local conditions.
We get the following :  α

(
N∑
i=1

Tij)Tsj

+ β

Nj (5.2)

Therefore, we add up all of the bee hives and we can get the expected visited time for flower
i:

∆Si =
l∑

j=1

 α

(
N∑
i=1

Tij)Tsj

+ β

Nj (5.3)

In this equation, α and β’s value depend on the bee’s working ability as well as local factors.

As we all know, some flowers need to be visited several times so that they can grow fruits.
We can use this number of times ε as a criteria. If the value of the formula above is more than
epsilon. Then we can add 1 to the total number A. By doing this process many times we can
get the total A, which is the expected number of flowers that will grow fruits. In this way:

A =
N∑
j

1 [∆Si > ε] (5.4)

After calculatingA, we can try to calculate the benefits of the farmers who manage the beehives.

Firstly, we will calculate the cost of managing the beehives as well as the bees.The cost of
installing one bee hive is q, and the number of the bee hives is l. The price of maintaining a
single bee is r.

Then we need to calculate what we can get from the fertilized flowers by using the money
we can get from one flower if it is fertilized and multiply it with A.The money we can get from
a single flower is Z.

Arranging all the possible factors we get the profit formula P . The cost of managing the

bee hives: ql; The cost of managing the bees: r
l∑

i=1

Ni; The money we can get from the fruit of

the flowers: ZA. So we get:

P (xi, yi, Ni, l) = ZA− ql − r

l∑
i=1

Ni (5.5)

We only need to find the best coordinate of the beehives xi,yi, the number of the beehives l as
well as the number of bees Ni living in them to maximize this profit:

xi, yi, Ni, l = argmaxP (xi, yi, Ni, l) (5.6)
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5.2 Algorithm Design
The process for solving the problem can be separated into three steps as shown in Figure

5.3. The first step is to decide on variables. We have to decide the number of beehives. Then,
to select the location of the beehives, we generate random points for the flower coordinates.
We use the density of flowers to create a uniform distribution of points representing individual
flowers.

Figure 5.3: Visualization of algorithm

The second step is to find the solution. To find the optimal location of the hive, it is necessary
to loop through all possible coordinates. For each location, we would find the distance to every
flower Tsj and use the formula stated above to calculate ∆S (the number of times visited). The
flower is counted as successfully pollinated if the number reaches a threshold value. We can
find the optimal location of the beehive by comparing the number of successfully pollinated
flowers. We can then calculate the necessary variables and put them into the price function P .

The process described above is only for one beehive. It can be repeated for multiple beehives
until the number of iterations reaches some preset value, for which price P can be compared to
find the maximum profit possible. The flowchart Figure 5.4 shows this process.

5.3 Numerical Experiment
The model was run for 50 iterations under the following conditions: The cost of caring for

one bee in this period(r) equals 0.005, the cost of installing one beehive(q) equals 500, the profit
that beekeepers get from when a single flower grows fruit(Z) equals to $5, and the threshold of
pollination(ε) equals to 8.

Figure 5.5 visualizes the distribution of optimal beehive locations. The larger dots represent
more beehives, and the smaller ones represent fewer hives in that region. It can be seen that the
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Figure 5.4: Flowchart for algorithm

distribution of the dots is relatively even. However, slightly more hives are collected near the
center compared to the corners, with the upper-right corner being the least populated.

Figure 5.5: Plot of optimal beehive locations

Figure 5.6 shows the relationship between the number of beehives (l) and the total profit
(P ). Starting from 20 beehives, the profit rises and experiences large fluctuations. For example,
there is a dip in profit from around $23000 to $17000 when the number of beehives is increased
to 25. The graph shows that the profit is maximized at around 37 beehives, bringing in roughly
$31000 in revenue. However, after that spike, the profit decreases continuously, eventually
reaching $10000 at around 48 beehives.
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Figure 5.6: Relationship between the number of beehives (l) and the total profit (P )

5.4 Sensitivity Analysis
We performed a sensitivity analysis on the algorithm. The process involved changing one

parameter and keeping all other parameters the same. The following table displays the range
for which the parameters were changed.

Parameters Range Amount generated
r 0.003 ≤ S ≤ 0.007 5
q 400 ≤ m ≤ 600 5
Z 4 ≤ β ≤ 7[6] 6
ε 5 ≤ R ≤ 12 8

Table 5.1: Parameter Range

Figure 5.7 shows the relationship between the profit that a single fruit generates (Z) and the
total profit (P ). The graph shows an upwards trend. The lowest point is Z=4.0, generating less
than $28000, while the highest point is Z=7.0, generating more than $36000 in profit. This is in
line with common sense, as a single fruit generating more profit would mean a group of fruits
generating more.

Figure 5.7: Relationship between profits of a single fruit (Z) and total profit (P )

Figure 5.8 shows the relationship between the cost of installing one beehive (q) and the total
profit (P ). The graph shows a downward trend. The highest point is when q is the smallest,
at 400, generating around $35800 in profit. The lowest point is at 600, generating just above
$22000. This is also in line with common sense, as the increased cost would directly subtract
from the profits.
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Figure 5.8: Relationship between the cost of installing one beehive (q) and the total profit (P )

Figure 5.9 shows the relationship between the natural death rate of the bee (r) and the total
profit (P ). The graph shows a downward trend. The highest point is when r is smallest, at
0.0030, generating $34000 in profit. When the death rate is higher, there are fewer bees to
pollinate the flowers, so fewer fruits would be grown and less money would be made.

Figure 5.9: Relationship between the natural death rate of the bee (r) and the total profit (P )

Figure 5.10 shows the relationship between the threshold of pollination (ε) and the total
profit (P ). The graph shows an upwards trend. The lowest point is ε=4.0, generating less than
$28000, while the highest point is ε=7.0, generating more than $36000 in profit. This is very
similar to the relationship shown in Figure 5.7.

Figure 5.10: Relationship between the threshold of pollination (ε) and the total profit (P )
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6 Evaluation
There are both strengths and weaknesses in our model:

Strengths:

• Our model is very comprehensive. In the part calculating the number of hive bees and
the foragers. We have taken many factors such as the process of fertilization as well as
the predator factors, the virus variables into consideration.

• Our model has practical applications. We have calculated the point of the maximum
mortality rate m to warn the bee keepers about the possibility of an extinction.

• Our second model calculating the number of flowers that will successfully grow fruits is
concise. We take account of the most important factor in the bees ’flower choices, which
is distance between the flower and the bee hives and successfully depict this factor in a
scientific way.

Limitations:

• We have not taken bee colony’s competition for pollen into consideration in measuring the
probability of bees choosing flowers. So our model can be inaccurate when concerning
large amount of bees getting pollen in a small area since in this way the competition
between bees cannot be neglected.

• We have not consider the impact of the drones on the bee’s population. The main role
of the drones in a bee colony is to fertilize the eggs. So the fertilizing rate of the eggs
is not constant at real life conditions. Therefore, our model may be inaccurate when the
population of the drones fluctuate a lot.
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Appendices

Appendix A The Globally Stable Steady State

g(H,F ) = f(H,F )A

dF

dt
= g(H,F ) = mF

f(H,F ) =
H + F

ω +H + F

∵ mF =
(H + F )A

ω +H + F

∴ A =
mF (ω +H + F )

H + F

dA

dt
= βB − H + F

ω +H + F
A

dB

dt
= (λ1S1 + λ2S2 + λ3S3 + λ4S4) ∗

R− A−B −H

R
− βB − φB

To be convenient to our calculation,we regard λ1S1 + λ2S2 + λ3S3 + λ4S4 as M

βB =
H + F

ω +H + F
A = mF

∴ B =
mF

β

M(R− A−B −H)

R
= βB + φB

M(R− mF (ω+H+F )
H+F

− mF
β

−H)

R
= mF +

φmF

β

(α− σ
F

H + F
)H = mF

Let F
H

= λ,
∴ mλ2 +mλ = αλ+ α− σλ

∴ λ =
−(m+ σ − α)±

√
(m+ σ − α

2
+ 4mα

2m

we adopt the root with + , because the other root with - will result λ a negative value, which
contradicts our calculation of static value because if one of the H and F is negative and the other
is positive, the conversion will definitely happen, which is unacceptable in our static analysis.

∴ F̂ =
MR− Mmω

1+ 1
λ

Rm+ Rφm
β

+ M
λ
+ Mm

β
+Mm
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Ĥ =
MR− Mmω

1+ 1
λ

λ(Rm+ Rφm
β

+ M
λ
+Mm)

The conditions for F̂ and Ĥ to be larger than 0 is:

MR >
Mmω

1 + 1
λ

If mω < R, Theorem must be valid when mω ≥ R

∴ λ <
R

mω −R

−(m+ σ − α) +
√

(m+ σ − α2 + 4mα

2m
<

R

mω −R

m2(αω −R)−m(2mα +Rσ −Rα) +
σR2

ω
< 0
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