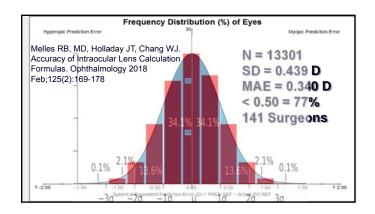
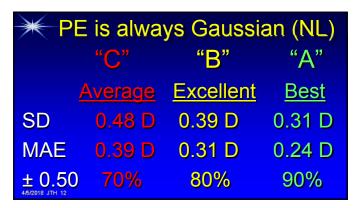
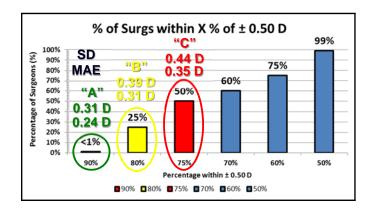

Financial Disclosure I have the following financial interests or relationships to disclose: Abbott Medical Optics: C; AcuFocus, Inc.: C,O; Alcon Laboratories, Inc.: C; ArcScan: C,O; Calhoun Vision: C,O; Elenza: C,O; Oculus, Inc.: C; Visiometrics: C,O;

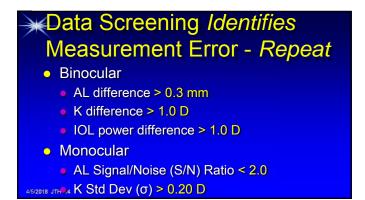
4 Questions to Answer
D How do we measure outcomes?
What are our current outcomes?
What are our current limits?
What is our near future hold?

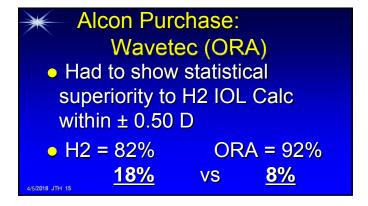
IOL Optical Comparsion						
IOL Type	Theoretical BSCVA	Actual BSCVA	Contrast Loss	Halos & Glare	Forward Light Scatter	
Aspherical Mono	20/09	20/16	0%	-	0%	
Spherical Mono	20/12	20/20	10%	+	0%	
EDF 1.50 D (1.00)	20/16	20/17	20%	+	10%	
Diffractive Multi 3.00 D (2.00)	20/20	20/22	25%	++	18%	
Diffractive Multi 4.00 D (2.75)	20/20	20/22	30%	+++	18%	
LA Dodgers 1993-1995: 1.7% from 20/8.9 to 20/9.2 42% ≤ 20/12.5 AJO 1996; Oct 122 (4): 476-85.						

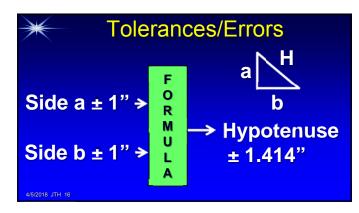


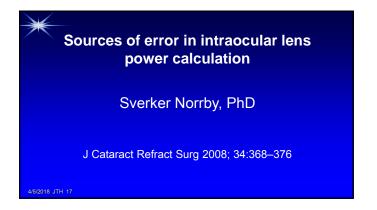


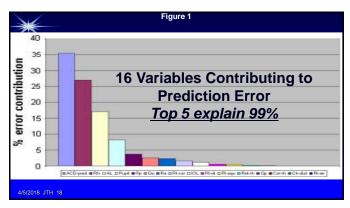

Formula Performance Prediction Error (PE)

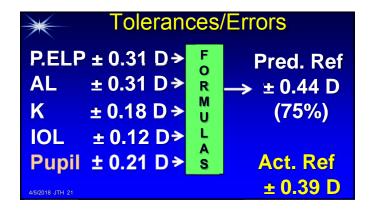

- Optimized => Mean PE (μ) = 0
- Std Dev (σ) or MAE
- % within ± 0.50 D
- "All comers" cannot exclude outliers, out of

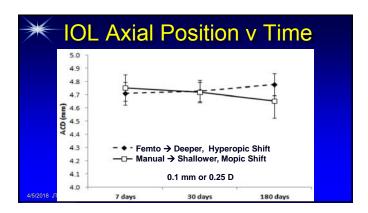

boundary, target not emmetropic, small ACDs ...

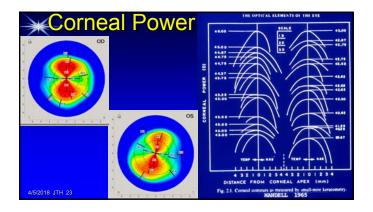


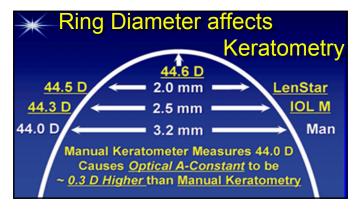


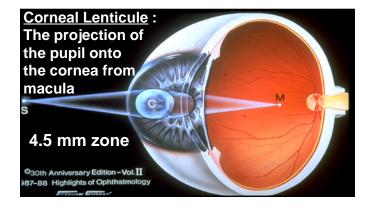


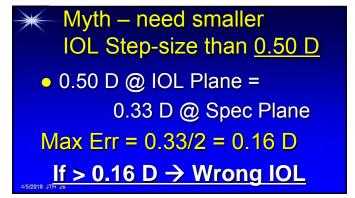






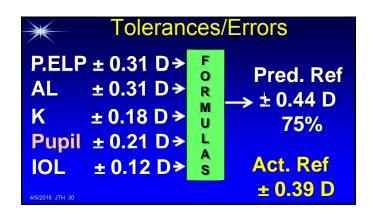

Major Factors (>99%)	Minor Factors (< 1%)	
Pred ELP = 35%	Vitreous Ref Index <1%	
PO Spec Ref = 27%	Aqueous Ref Index <1%	
AL = 17%	Retinal Thick <1 %	
Pupil Size = 8%	Post Cornea Q <1 %	
K post rad = 4%	Cornea Thick <1 %	
K-Ant Corneal Q = 3%	Chart Dist <1 %	
K ant rad = 3%	Air Ref Index <1 %	
Cornea Ref Indx = 2%		
IOL Power = 2%		


₩ 99% Contribution to PE							
<u>Vari.</u>	<u>%</u>	<u>SD (D)</u>	<u>MAE (D)</u>				
• ELP	35%	0.31	0.24				
Ref	27%	0.39	0.31				
3 AL	17%	0.31	0.24				
4 K	10%	0.18	0.14				
5 Pupil	8%	0.21	0.16				



Current Accuracy Limitations

- AL, K & Ref measurement error
- Corneal Back Surface measurement EVOLVING
- IOL Radii, asphericity and thickness PROPRIETARY
- Prediction of ELP NOT EXACT and Explicit Property in Property in


IOL Power Selection Methods Thin IOL Vergence Formula Binkhorst, Holladay, SRK, ... Thick IOL Vergence Formula Holladay 2, Olsen 2, Barrett 2 Ray Trace

- Preußner, Findl, Olsen, Hoffman, WahlNeural Network
 - Kaprowski, Clarke, Hill

.....

IOL Power Selection Methods

- Thin IOL Vergence Formula:
 - Cannot adjust for variations in IOL Thickness
- Thick IOL Vergence Formula:
 - Cannot adjust for aspheric IOLs
- Ray Trace:
 - Cannot adjust for systematic errors in Biometer
- Neural Network:
- Is still limited by measurement error and variability in ELP

Future Is Now!

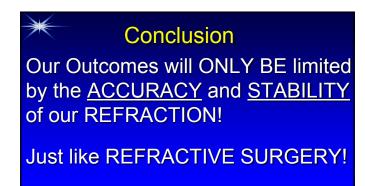
Post Operative Adjusment

- Light Adjustable IOL
 - RxSight (Calhoun) Ron Kurtz
 - FDA Nov 22, 2017
- Femto Adjustable IOL
 - Perfect Vision Steven Smathers
- Clerio Mike Totterman

Light Adjustable Lens Technology

- The first truly custom IOL; designed to be noninvasively adjusted after implantation using proprietary UV light
- ~2-3 weeks after cataract surgery, surgeon enters desired refractive change into the Light Delivery Device (LDD)
- Multiple light adjustment treatments can be performed (as needed), and then vision is permanently locked in
- 91.8% of eyes achieved result within 0.50 D of target MRSE (similar to refractive accuracy seen in recent LASIK studies¹).

Modern Lauer In Shi Kerstrenlamin Datromen KPS daniad 2016 Volume 42 Insus II. manus 1224-1234



Conclusion

We are at the beginning of a paradigm shift where every surgeon will achieve ≥ 92% of cases within ± 0.50 D by adjusting the IOL postoperatively

/5/2018 JTH 3

